Identification of Mycobacterium species and Mycobacterium tuberculosis complex resistance determinants by use of PCR-electrospray ionization mass spectrometry.

Abstract

PCR coupled with electrospray ionization mass spectrometry (PCR-ESI-MS) is a novel technology that has recently been used to identify pathogens from clinical specimens or after culture within about 6 h. We evaluated the MDR-TB (multidrug-resistant tuberculosis) assay, which uses PCR-ESI-MS for detection and identification of Mycobacterium spp. and Mycobacterium tuberculosis complex (MTBC) resistance determinants from solid and broth Middlebrook culture media. The performance of the MDR-TB assay was compared to identification using nucleic acid hybridization probes and 16S rRNA gene sequencing for 68 MTBC and 97 nontuberculous mycobacterial (NTM) isolates grown on agar and 107 cultures grown in Bactec MGIT broth. MTBC resistance profiles from the MDR-TB assay were compared to results with the agar proportion method. The PCR-ESI-MS system correctly identified all MTBC isolates and 97.9% and 95.8% of the NTM isolates from characterized agar cultures and MGIT broth cultures to the species level, respectively. In comparison to the agar proportion method, the sensitivity and specificity for the detection of drug resistance using the MDR-TB assay were 100% and 92.3% for rifampin, 100% and 93.8% for isoniazid, 91.6% and 94.4% for ethambutol, and 100% and 100% for fluoroquinolones, respectively. The MDR-TB assay appears to be a rapid and accurate method for the simultaneous detection and identification of mycobacterial species and resistance determinants of MTBC from culture.

Topics

    4 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)